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I. INTRODUCTION

During a thermodynamic process in which a system, in
contact with a thermal reservoir, evolves from one state of
thermal equilibrium A, to another B, the average work per-
formed on the system must exceed the free energy differ-
ence: �W���F=FB−FA �1�. The work in excess of �F, i.e.,
the dissipated work �Wdiss�= �W�−�F, quantifies the amount
of energy irretrievably lost to the surrounding thermal envi-
ronment. Recently, Kawai, Parrondo, and Van den Broeck �2�
have related �Wdiss� to another measure of irreversibility,
roughly speaking the distinction between the forward and
reverse directions of the “arrow of time.” Specifically, they
have shown that

��Wdiss� � D��F � �R� , �1�

where �F and �R are time-dependent phase-space densities
describing the evolution of the system from A to B, and from
B to A, respectively; and D�� ����=�� ln�� /��� denotes the
relative entropy �3�, a measure of the distinguishability be-
tween two distributions. When the system in question
evolves deterministically, under Hamilton’s equations, then
Eq. �1� is an equality. However, if the system description is
coarse grained, or explicitly stochastic, then the relative en-
tropy only provides a lower bound on the dissipated work.

Connections between dissipation and temporal asymmetry
similar to Eq. �1� have also been established by other au-
thors. Maes �4� and later Maes and Netočný �5� have ob-
tained a correspondence between thermodynamic measures
of dissipation and relative entropies between forward and
reverse distributions in path space; and Gaspard �6� has con-
nected this result to the dynamical randomness that charac-
terizes nonequilibrium steady states. In the context described
in the previous paragraph, Jarzynski �7� has derived a rela-
tion analogous to Eq. �1�, but expressed in terms of distribu-
tions in path space �see Eq. �4��.

The goal of the present paper is to illustrate Eq. �1� using
the simple model of a particle inside a one-dimensional,
moving harmonic well. This model is both analytically trac-
table and experimentally relevant �8–14�. After briefly re-
viewing the central result of Ref. �2� in Sec. II, we introduce
our model at the beginning of Sec. III. We then solve the
model and illustrate Eq. �1� when the system evolves under
Hamilton’s equations �Sec. III A� and both overdamped and

inertial Langevin dynamics �Secs. III B and III C, respec-
tively�. In Sec. IV we extend our analysis and show that the
bound in Eq. �1� can be improved by specifying the phase-
space density at two times, rather than one. Gomez-Marin et
al. �15� have also studied this model in the context of Eq. �1�
and in Sec. IV we briefly discuss the relationship between
our results and theirs.

II. BACKGROUND

Consider a classical system with N degrees of freedom,
described by the coordinates x= 	x1 , . . . ,xN
 and conjugate
momenta p= 	p1 , . . . , pN
. Let z= �x ,p� denote a point in
phase space, and let H�z ,�� denote a parameter-dependent
Hamiltonian for this system. We assume that this Hamil-
tonian is time-reversal invariant: H�z* ,��=H�z ,��, where
the asterisk denotes the reversal of momenta, p→−p.

The term thermodynamic process will indicate a sequence
of events whereby the system evolves in phase space as the
external parameter � is varied according to an arbitrary
schedule, or protocol �t �also labeled as ��t��, from an initial
time t=0 to a final time t=�. During this interval of time, the
microscopic evolution of the system is specified by a trajec-
tory zt, or z�t�, and ��z , t� will denote the time-dependent
phase-space density describing an ensemble of such trajecto-
ries. As in Ref. �2� we will explicitly consider two such pro-
cesses: one defined by a forward protocol �t

F, during which
the parameter is varied from an initial value �0

F=A to a final
value ��

F=B, the other defined by a reverse protocol �t
R

=��−t
F , from �0

R=B to ��
R=A.

Prior to the start of either the forward or the reverse pro-
cess �t�0�, the system is brought to equilibrium by weak
contact with a thermal reservoir at inverse temperature �. As
a result, the initial phase-space density is a canonical distri-
bution at �=A or B. The system might subsequently be ther-
mally isolated from the reservoir, or else it might remain in
contact with the reservoir. In the former case, Hamilton’s
equations govern its evolution from t=0 to �, while in the
latter case we will use stochastic dynamics to model the ran-
dom effects of the environment. In either situation the work
performed on the system during this interval of time is given
by the following functional of the trajectory:

W�zt� = �
0

�

dt�̇
�H

��
�zt,�t� . �2�
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For the case of Hamiltonian dynamics, the average dissi-
pated work can be expressed as �see Ref. �2� for the details
of the derivation�

��Wdiss� =� dz�F�z,t�ln� �F�z,t�
�R�z*,� − t�



= D��F�z,t� � �R�z*,� − t�� . �3�

Since relative entropy is a measure of the distinguishability
of two probability distributions �3�, Eq. �3� relates the dissi-
pation of energy to the ease with which a process can be
distinguished from its time-reversal �2,15,16�.

Equation �3� is an equality because the underlying Hamil-
tonian dynamics are deterministic. If the system remains in
contact with the reservoir during the process, we instead ob-
tain an inequality, Eq. �1�. There are two ways to argue this,
both of which make use of a key property of the relative
entropy between two distributions, namely that it decreases
when the distributions are projected onto a smaller set of
variables �3�. When the system remains in contact with a
reservoir, then we can view the system and the reservoir as
two subsystems that together form a large, isolated “super-
system” to which Eq. �3� applies: the dissipated work gives
the relative entropy between the two distributions in the full
phase space. Upon projecting out the reservoir variables, the
relative entropy decreases, and we obtain Eq. �1�, as dis-
cussed in Ref. �2�. Alternatively, we note that an equality
analogous to Eq. �3� can be formulated for distributions in
path space, rather than phase space �7�:

��Wdiss� = D�PF�	F� � PR�	R�� . �4�

Here the trajectory 	F describes the evolution of the system
during a given realization of the forward process, and PF�	F�
is the probability distribution of such trajectories; 	R and PR
are defined in a similar manner for the reverse process. Equa-
tion �4� holds for both deterministic and stochastic evolution.
If we now project from path space onto phase space, e.g.,
PF�	F�→�F�z , t�, then the relative entropy decreases, and we
again obtain the inequality, Eq. �1�. �Reference �15� refers to
this projection procedure as “coarse-graining in time.”� In
either case, the decrease of relative entropy has a simple
interpretation: when we discard microscopic information—
either about the state of the reservoir, or about states of the
system itself at times other than the specified instant, t—then
we diminish our ability to distinguish between the forward
and the reverse process. This suggests that the more micro-
scopic information we retain, the closer the value of D is to
its upper bound ��Wdiss�. We investigate this in Sec. IV,
where we consider a generalization of Eq. �1� in which the
microstate of the system is specified at two instants in time,
rather than one. References �2,15,16� contain a related analy-
sis specifically addressing the loss of microscopic informa-
tion during coarse graining and how this loss affects the
value of the relative entropy.

III. PARTICLE IN A MOVING HARMONIC WELL

In this section we illustrate Eq. �1� through an explicit
calculation of the average dissipated work and relative en-

tropy for a particle in a one-dimensional, moving harmonic
well. We begin by specifying the model and obtaining useful
preliminary results. Then in Sec. III A we evaluate the aver-
age dissipated work and relative entropy for a system follow-
ing Hamiltonian dynamics. In Secs. III B and III C we repeat
the calculation with the system modeled by Langevin dy-
namics, in different limiting regimes.

Our system is a particle of mass m trapped in a harmonic
well with spring constant k:

H�x,p,�� =
p2

2m
+

k

2
�x − ��2. �5�

We will consider processes during which the center of the
well is moved either rightward or leftward at constant speed
u. These correspond to forward and reverse protocols,
�F�t�=ut and �R�t�=u��− t�. Explicit expressions for the ini-
tial equilibrium densities are given by the following Gauss-
ians:

�F�z,0� =
�

2

� k

m
exp�− �� p2

2m
+

kx2

2
�
 , �6a�

�R�z,0� =
�

2

� k

m
exp�− �� p2

2m
+

k

2
�x − u��2�
 . �6b�

For this system �F=0 by translational symmetry, therefore
for the forward process

�Wdiss� = − uk�
0

�

dt�x̄F�t� − ut� , �7�

where x̄F�t� is the average position during the forward pro-
cess.

Since the time-dependent densities �F�z , t� and �R�z , t�
will prove to be Gaussians for all the cases considered in this
paper �see Secs. III A–III C�, it is useful here to establish
uniform notation for the description of two-dimensional
Gaussian distributions fG�z�= fG�x , p�. Such a distribution is
uniquely determined by the moments �means and covari-
ances�,

x̄ =� dzfG�z�x , �8a�

p̄ =� dzfG�z�p , �8b�

�x
2 =� dzfG�z��x − x̄�2, �8c�

�p
2 =� dzfG�z��p − p̄�2, �8d�

�xp =� dzfG�z��x − x̄��p − p̄� . �8e�

An explicit expression for fG�z� in terms of these moments is
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fG�z� =
1

2
�det �
exp�−

1

2
�z − z̄�T�−1�z − z̄�
 , �9�

where z is a vector in phase space and � is the covariance
matrix:

z = �x

p
�, � = � �x

2 �xp

�xp �p
2 � . �10�

Lastly, the relative entropy between two Gaussian distribu-
tions, fG�z� and gG�z*�, is �see Eq. �3��

D�fG�z� � gG�z*�� = − 1 +
1

2
�ln�det �g

det � f
� + Tr��g

−1�
f
*�


+
1

2
�z̄

f
* − z̄g�T�g

−1�z̄
f
* − z̄g� , �11�

where �
xp
* =−�xp and all other elements of �* are unaltered

�17�.

A. Hamiltonian dynamics

We now consider the case in which the system is ther-
mally isolated from the reservoir after the initial equilibra-
tion stage, and thereafter evolves under Hamilton’s equations
as the harmonic well is translated leftward or rightward,

ẋF = pF/m, ṗF = − k�xF − ut� , �12a�

ẋR = pR/m, ṗR = − k�xR − u� + ut� . �12b�

To solve for the evolution of the phase-space densities �F
and �R, we observe that since the initial density is Gaussian
�Eqs. �6�� and the equations of motion are linear �Eqs. �12��,
the distribution remains Gaussian for all times �18�. Thus we
need only determine the means and �co�variances as func-
tions of time. From Eqs. �6� we have the initial means

x̄F�0� = 0, p̄F�0� = 0, x̄R�0� = u�, p̄R�0� = 0,

�13a�

and the initial variances

�x
2�0� =

m

�
, �p

2�0� =
1

�k
, �xp

2 �0� = 0, �13b�

which are the same for the forward and reverse processes.
Solving Eqs. �12� leads to a set of linear equations for the
positions and momenta in terms of their initial conditions.
Combining these solutions with Eqs. �8�, �13a�, and �13b�
leads to the solutions

x̄F�t� = u�t −
sin��t�

�

, p̄F�t� = mu�1 − cos��t�� ,

�14a�

x̄R�t� = u�� − t +
sin��t�

�

, p̄R�t� = mu�cos��t� − 1� ,

�14b�

�x
2�t� =

m

�
, �p

2�t� =
1

�k
, �xp�t� = 0, �14c�

where �2=k /m.
We can now explicitly verify Eq. �1�. The relative entropy

between the forward phase-space density �F�z , t� and the re-
verse phase-space density �R�z* ,�− t� is determined by plug-
ging Eqs. �14� into Eq. �11�,

D��F�z,t� � �R�z*,� − t�� = �mu2�1 − cos����� . �15�

Comparing this with

��Wdiss� = �mu2�1 − cos����� , �16�

computed from Eqs. �14a� and �7�, we find the predicted
result ��Wdiss�=D��F ��R�.

B. Overdamped Langevin dynamics

We now imagine that the system remains in contact with
the thermal reservoir throughout the process, and we will use
Langevin dynamics to model the presence of the reservoir.
As discussed in Sec. II, Eq. �1� should apply as a strict in-
equality in this case.

In this section we consider the overdamped limit, in
which the momentum effectively equilibrates instanta-
neously, and as a result the momentum does not contribute to
the relative entropy. We therefore focus on the position dy-
namics. For the forward process the Fokker-Planck equation
for �F�x , t� is

�

�t
�F�x,t� =

k

	

�

�x
��x − ut��F�x,t�� +

1

	�

�2

�x2�F�x,t� , �17�

where 	 is the friction coefficient.
To solve Eq. �17�, we recognize that an initially Gaussian

distribution will remain Gaussian for all time under the evo-
lution of Eq. �17�, as can be checked by substitution �see, for
example, �8,19��. Thus �F�x , t� is Gaussian with mean and
variance,

x̄F�t� = ut −
	u

k
�1 − e−kt/	�, �F

2 =
1

�k
. �18�

For the reverse process we replace t with �− t in Eq. �17�.
The solution is a Gaussian distribution with mean and vari-
ance,

x̄R�t� = u�� − t� +
	u

k
�1 − e−k��−t�/	�, �R

2 =
1

�k
. �19�

We now use these results to calculate the relative entropy
and average dissipated work. Using Eq. �11� we obtain

D��F�x,t� � �R�x,� − t��

=
2�	2u2

k
�1 − e−k�/2	 cosh� k

	
� �

2
− t�
�2

. �20�

The average dissipated work is obtained by substituting Eq.
�18� into Eq. �7� and evaluating the integral:

��Wdiss� = �	u2�� −
	

k
�1 − e−k�/	�
 . �21�
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Verifying Eq. �1� requires demonstrating that the average
dissipated work is always greater than the relative entropy
for any values of system parameters. To begin, we note that
��Wdiss� does not depend on t and D��F ��R� obtains its maxi-
mum value Dmax at time t=� /2. Combining Eqs. �20� and
�21�, we get

��Wdiss� − D��F � �R� � ��Wdiss� − Dmax

=
�	2u2

k
�
 − �3 − e−
/2��1 − e−
/2�� � 0,

�22�

where 
=k� /	 is the scaled time. Using introductory calcu-
lus techniques, it is easy to verify that the bracketed quantity
in Eq. �22� is non-negative for any 
�0. As an example, we
plot ��Wdiss� and D��F ��R� in Fig. 1 as functions of time for
k, 	, u, and � all set to one.

In the quasistatic limit, namely u→0 with u� fixed, both
the dissipation and relative entropy approach zero, although
at different rates. Specifically, from Eqs. �20� and �21�,
��Wdiss��u and D��F ��R��u2. This limiting behavior can
be justified on general grounds since we are considering con-
tinuous Markovian stochastic processes �20�. A heuristic ar-
gument is as follows: consider such a continuous Markovian
stochastic process perturbed by varying an external param-
eter � according to a specified protocol ��t�. In the quasi-

static limit, i.e., �̇���1, the phase-space density is approxi-
mately

P�z,t� � P��t�
ss �z� + ��P�z,t� , �23�

where P�
ss�z� is the unique stationary state with fixed external

parameter � and �P�z , t� is the first-order correction to the
phase-space density �21�. Combining Eq. �23� with the defi-
nitions of average dissipated work �cf. Eq. �2�� and relative
entropy, and taking the limit �→0, leads to ��Wdiss��� and
D��F ��R���2. In the above model, ��t�=ut with �=u.

C. Full phase-space Langevin dynamics

In this section we analyze the same stochastic system
without assuming the overdamped limit. �We do assume that

the motion is not critically damped, i.e., 	2�4mk.� Using the
same notation as the previous section III B the Fokker-
Planck equation for the phase-space density of the forward
process is

�

�t
�F�z,t� = −

p

m

�

�x
�F�z,t� +

�

�p
��k�x − ut� +

	p

m
��F�z,t�


+
	

�

�2

�p2�F�z,t� . �24�

While Eq. �24� can be solved exactly, the solution is com-
plicated and unilluminating. An analytic solution is presented
in the Appendix; here, we illustrate Eq. �1� by plotting the
ratio ��Wdiss� /D��F ��R� in Fig. 2 for various values of the
friction coefficient 	.

Roughly speaking, 	 measures the coupling between the
system and the reservoir: for larger 	, the reservoir and sys-
tem interact more strongly; whereas, when 	→0, the reser-
voir and the system decouple, with the result that the system
evolves independently of the reservoir, under deterministic
Hamiltonian dynamics. Figure 2 clearly shows that as 	 de-
creases, the relative entropy approaches the average dissi-
pated work. Decreasing 	 weakens the interaction between
the system and the reservoir, resulting in less microscopic
information leaking into the reservoir variables. The result is
more information is contained in the system variables, re-
flected by an increase in the relative entropy. The flow of
microscopic information between system and reservoir de-
grees of freedom and its relation to dissipation has previ-
ously been discussed in the context of other models �16�.

IV. TWO-TIME PHASE-SPACE DENSITIES

In the previous sections, the phase-space densities were
evaluated at one particular time. For Hamiltonian dynamics
this is enough information to determine the average dissi-
pated work. In contrast, when the dynamics are stochastic the

FIG. 1. Comparison of ��Wdiss� �dashed line� and D��F ��R�
�solid line� in the overdamped limit. All parameters �k, 	, u, and ��
have been set to one in their respective units. FIG. 2. Comparison of ��Wdiss� /D��F ��R� for various values of

the friction coefficient 	; the solid lines are, from bottom to top,
	=5 and 0.1. The dashed line represents Hamiltonian dynamics
�	=0� with ��Wdiss�=D��F ��R�. All other system parameters �m, k,
u, and �� have been set to one in their respective units.
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phase-space densities alone do not contain enough informa-
tion to determine the average dissipated work. In this section
we address this issue by investigating the implications of
specifying the phase-space density at two times. Let
P�z1 , t1 ;z0,t0� be the “two-time” probability for the system to
be at z0 at time t0 and z1 at a later time t1. We will explicitly
demonstrate that two-time distributions provide a better
bound for the average dissipated work: ��Wdiss�
�D�PF � PR��D��F ��R�.

For clarity we consider the overdamped limit as in Sec.
III B. The goal is to determine the pairwise probability
P�x1 , t1 ;x0 , t0�. For the forward process, we can decompose
the joint probability distribution into a conditional probabil-
ity to be at x1 at t1 given the system was at x0 at t0,
�F�x1 , t1 �x0 , t0�, and a one-time probability �F�x0 , t0�, i.e.,
PF�x1 , t1 ;x0 , t0�=�F�x1 , t1 �x0 , t0��F�x0 , t0�. The expression for
�F�x0 , t0� was determined in Sec. III B �see Eq. �18��. The
conditional probability is computed by solving the Fokker-
Planck equation �see Eq. �17�� with the initial condition
��x−x0� at t0, i.e., the initial density is Gaussian with x̄�t0�
=x0 and �x

2�t0�=0. At time t1, the mean and variance for the
forward process conditional probability are

x̄�t1� = e−k�t1−t0�/	x0 + u�t1 − t0e−k�t1−t0�/	� −
	u

k
�1 − e−k�t1−t0�/	� ,

�25a�

�x
2�t1� =

1

�k
�1 − e−2k�t1−t0�/	� . �25b�

The pairwise distribution is the product of Gaussian distribu-
tions; as such, it is Gaussian as well. A simple, yet lengthy
calculation shows that the means and variances of the pair-
wise distribution for the forward process are

x̄F = �x̄0

x̄1
� =�ut0 −

	u

k
�1 − e−kt0/	�

ut1 −
	u

k
�1 − e−kt1/	� � , �26a�

�F = � �x0

2 �x0x1

�x0x1
�x1

2 � =
1

�k
� 1 e−k�t1−t0�/	

e−k�t1−t0�/	 1
� .

�26b�

Repeating the above calculation for the reverse joint distri-
bution leads to similar results.

The next step is to determine the relative entropy. We are
interested in comparing the pairwise probability for the for-
ward process PF�x1 , t1 ;x0 , t0�, with the time-reversed pair-
wise probability for the reverse process PR�x0 ,�− t0 ;x1 ,�
− t1�. If we allow t0 and t1 to be arbitrary, then from Eq. �11�
the relative entropy is

D�PF � PR� =
2�	2u2/k

1 − e−2k�t1−t0�/	 ��0
2 + �1

2 − 2e−k�t1−t0�/	�0�1� ,

�27�

where

�i = 1 − e−k�/2	 cosh� k

	
� �

2
− ti�
, i = 0,1. �28�

Figure 3 compares the “two-time” relative entropy
D�PF � PR�, “one-time” relative entropy D��F ��R�, and the
average dissipated work. For D�PF � PR�, we fix t0=� /4. We
see that ��Wdiss��D�PF � PR��D��F ��R� for all times t1.
Thus by specifying an additional time in our probability dis-
tributions we have improved the bound in Eq. �1�.

This result is an instance of the coarse-graining procedure
outlined in Sec. II �see the discussion below Eq. �4��, where
the path-space probability distribution PF�	F� has been pro-
jected down onto a two-time phase-space density. Projecting
onto a two-time phase-space density eliminates less micro-
scopic information than projecting onto a one-time phase-
space density; hence the two-time relative entropy is greater
than the one-time relative entropy.

In a related independent analysis, Gomez-Marin et al.
�15� used the present model to investigate the behavior of the
“N-time” relative entropy DN. By evaluating DN at N equally
spaced times, i.e., ti+1− ti=� /N, they were able to demon-
strate that ��Wdiss�−DN�1 /N2 as N→�. We note that our
two-time relative entropy agrees with theirs: choosing t1=�
and t0=0 in Eq. �27�, we recover Eq. �22� �with n=1� of Ref.
�15�.

V. CONCLUSION

The average energy dissipated by a thermodynamic pro-
cess is related to how distinguishable the process is from its
time reversal, i.e., how well one can discern the “arrow of
time.” This paper provides a pedagogical illustration of this
idea using an exactly solvable model. For deterministic
Hamiltonian systems, complete knowledge of the forward
and reverse phase-space density at any one time is enough
to determine the dissipation. This is not true for stochastic
systems. Calculating the dissipation from microscopic

FIG. 3. Comparison of D�PF � PR� �dot-dashed line�, D��F ��R�
�solid line�, and ��Wdiss� �dashed line� in the overdamped limit. All
system parameters have been set to one in their respective units.
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information in stochastic systems requires knowledge of the
entire evolution of the system, both for the forward and re-
verse processes. Partial knowledge gives only a lower bound
on the dissipation. We have seen that the tightness of the
lower bound is correlated with the amount of information
known about the system’s evolution. Specifically, when the
system is loosely coupled to a reservoir, very little informa-
tion is lost to the reservoir. As a result the relative entropy
between the system’s forward and reverse phase-space den-
sities reasonably approximates the dissipation in this limit.
The lower bound can also be tightened using a multitime
relative entropy where the microscopic state of the system is
specified many times along the system’s trajectory.
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APPENDIX: PHASE-SPACE DENSITY FOR SEC. III C

In this appendix, we solve Eq. �24� for the full phase-
space density of Sec. III C. To begin, the coefficients of Eq.
�24� are linear in x and p. Consequently, as in the previous
sections, an initial Gaussian distribution will remain Gauss-
ian. Again we must determine the means, x̄ and p̄, and cova-
riance matrix � as functions of time. Combining Eq. �24�
with the derivatives of Eqs. �8� we find the equations of
motion for the means and variances of the forward process

dx̄F

dt
=

p̄F

m
,

dp̄F

dt
= − k�x̄F − ut� −

	

m
p̄F, �A1a�

d�x
2

dt
=

2

m
�xp,

d�p
2

dt
= −

2	

m
�p

2 − 2k�xp +
2	

�
,

d�xp

dt
= −

	

m
�xp − k�x

2 +
1

m
�p

2. �A1b�

The reverse process phase-space density is described by a
similar set of equations.

The solutions of Eqs. �A1a� and their reverse process
counterparts are

x̄F�t� = Aer+t + Ber−t + u�t − 	/k� , �A2a�

p̄F�t� = mr+Aer+t + mr−Ber−t + mu , �A2b�

x̄R�t� = − Aer+t − Ber−t + u�� − t + 	/k� , �A2c�

p̄R�t� = − mr+Aer+t − mr−Ber−t − mu , �A2d�

where

r� =
− 	 � �	2 − 4mk

2m
�A3�

and

�A

B
� =

− mu
�	2 − 4mk

� 	r+/k + 1

− 	r−/k − 1
� �A4�

are determined by the initial conditions �Eq. �13a��. The so-
lutions to Eq. �A1b� with initial conditions given by Eq.
�13b� are

�x
2�t� =

m

�
, �p

2�t� =
1

�k
, �xp�t� = 0. �A5�

Using Eq. �7�, the average dissipated work is

�Wdiss� = 	u2� + uk� A

r+
�1 − er+t� +

B

r−
�1 − er−t�
 . �A6�

From Eq. �11�, the relative entropy is

D��F � �R� =
1

2
	�k�A�er+t + er+��−t�� + B�er−t + er−��−t���2

+ �m�r+A�er+t − er+��−t�� + r−B�er−t − er−��−t���2
 .

�A7�
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